An Anti-Spam Detection Model for Emails of Multi-Natural Language
نویسندگان
چکیده
منابع مشابه
An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملLanguage Model Issues in Web Spam Detection
Language models have been widely used in the detection of spam pages in the web. However even though most of the experiments using language models to detect spam have got improved results, there exists several problems in the use of language models which affects the validity of the results. This paper points out the shortcomings of using language models specifically KL-Divergence and suggested ...
متن کاملDetecting Phishing Emails the Natural Language Way
Phishing causes billions of dollars in damage every year and poses a serious threat to the Internet economy. Email is still the most commonly used medium to launch phishing attacks [1]. In this paper, we present a comprehensive natural language based scheme to detect phishing emails using features that are invariant and fundamentally characterize phishing. Our scheme utilizes all the informatio...
متن کاملan application of equilibrium model for crude oil tanker ships insurance futures in iran
با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...
An Anti-spam Filter Combination Framework for Text-and-Image Emails through Incremental Learning
We present an anti-spam filtering framework that combines text-based and image-based anti-spam filters. First, an incremental learning approach to reducing mismatches between training and test datasets is proposed to resolve the problem of a lack of training data for legitimate emails that contain both text and images. Then, the outputs of text-based and image-based filters are combined with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Southwest Jiaotong University
سال: 2019
ISSN: 0258-2724
DOI: 10.35741/issn.0258-2724.54.3.6